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We study the impact of primordial non-Gaussianity on the density profile of dark matter halos by
using the semianalytical model introduced recently by Dalal et al. which relates the peaks of the
initial linear density field to the final density profile of dark matter halos. Models with primordial
non-Gaussianity typically produce an initial density field that differs from that produced in Gaussian
models. We use the path-integral formulation of excursion set theory to calculate the non-Gaussian
corrections to the peak profile and derive the statistics of the peaks of the non-Gaussian density field.
In the context of the semianalytic model for halo profiles, currently allowed values for primordial
non-Gaussianity would increase the shapes of the inner dark matter profiles, but only at the sub-
percent level except in the very innermost regions.

I. INTRODUCTION

Observations of both the cosmic microwave back-
ground (CMB) and large-scale structure (LSS) are com-
patible with adiabatic, nearly scale-invariant and Gaus-
sian primordial perturbations in agreement with the pre-
dictions of the simplest inflationary models [1, 2]. Al-
though successful in explaining the current observations,
there are still open questions about the physics of infla-
tion. Primordial non-Gaussianity is a sensitive probe of
the interactions of quantum fields during inflation and
hence contains important information about the funda-
mental physics responsible for inflation beyond that con-
tained in the power spectrum [3].

The CMB provides a clean probe of primordial non-
Gaussianity since the perturbations are still in the linear
regime and unprocessed. Extracting information about
primordial non-Gaussianity from large-scale structure is
more complex since gravity couples Fourier modes to the
point that imprints of the initial distribution are hidden.
To constrain primordial non-Gaussianity (PNG) from
large-scale structure, we need to identify a signature that
can be produced only by primordial non-Gaussianity and
not by gravitational instability. One that has emerged in
recent years is scale-dependent bias [4–20]. In this pa-
per we investigate whether primordial non-Gaussianity
leaves a distinctive imprint in a different arena, on the
profile of dark matter halos.

In principle, if PNG led to a difference in the dark
matter halo profile, we could detect this in a variety of
ways. Direct mass maps are possible via weak lensing
measurements; these maps though are unlikely to have
the sensitivity to distinguish small changes in profiles.
Another possibility is that a larger density in the interior
of the halos would lead to a larger detection of dark mat-
ter annihilation in sensitive gamma-ray experiments. Al-
though there are many astrophysical and particle physics
uncertainties, the ρ2 scaling of the signal (where ρ is the
density profile of the halo) could conceivably promote

even small effects to prominence. Another area where
the halo profiles assume importance is in the context of
the halo model of large-scale structure, which is often
used to model signals seen in galaxy surveys. One could
imagine a scenario in which a change in the dark mat-
ter profile could propagate to the statistics observed in
surveys if the changes were significant.

Within the standard ΛCDM cosmology, halos form hi-
erarchically through the mergers and accretion of previ-
ous generations of virialized objects. Therefore the for-
mation of dark matter halos is a complex, nonlinear pro-
cess. Nevertheless N -body simulations show regularity
in properties of the final halos. In particular they in-
dicate a universal density profile for the final halos, the
so-called NFW profile [21, 22], with ρ ∝ r−3 at large
radii and ρ ∝ r−1 at small radii . The origin of this
universal profile has been a long-standing question. In a
recent paper [23], Dalal et al. proposed a semianalytical
model to explain the origin of the NFW profile. They
suggest that the profile of the collapsed halos can be de-
termined in terms of their precursor peaks. Their model
consists of two parts: calculating the averaged profile of
a peak in the linear density field and a mapping between
the properties of the initial peak to the properties of the
final halo. Adiabatic contraction and dynamical friction
are the main physical effects that transform the initial
peak shape to the final halo profile.

Since in this model the density profile of the dark mat-
ter halos is determined in terms of the peaks of the linear
density field, it allows us to trace the impact of primor-
dial non-Gaussianities on the profile of the collapsed ha-
los. We quantify the non-Gaussian corrections to the
profile of the peaks of the linear density field using the
path-integral formulation of excursion set theory recently
developed by Maggiore and Riotto (MR)[24–26] and then
propagate these changes to the shapes of the final dark
matter halos.

In principle one could study the effect of primor-
dial non-Gaussianity on halo profiles by running simu-
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lations. Indeed, there has been some work in this di-
rection [27] which provided some fuel for the claim that
non-Gaussianity does affect halo profiles. This work is
complimentary: because we attack the problem semiana-
lytically, we can probe the profile much closer to the cen-
ter without any resolution issues. Of course, the down-
side is the possibility that the method of Ref. [23] does
not capture all of the physics relevant to this problem.

This paper is organized as follows. In Sec. II, we review
the semianalytical model of Dalal et al. to explain the
origin of the NFW profile. In Sec. III we review the
path-integral formulation of excursion set theory and in
Sec. IV we apply this formalism to calculate the peak
profile in the Gaussian and non-Gaussian limits. In Sec.
V we present our results and in Sec. VI we draw the final
conclusions.

II. SEMIANALYTIC MODEL FOR THE DARK
MATTER HALO PROFILE

Dark matter halos form from the peaks of the initial
density field. In the so-called peak formalism, one as-
sumes that gravitationally bound objects form at local
maxima (peaks) of the linear density field. Therefore the
material that collapsed to form a halo of a given mass
can be identified in the initial linear density field first by
smoothing it with a filter of appropriate scale and then
locating all the peaks above some threshold. Using the
main assumption of the peak formalism, Dalal et al. [23]
suggested that the density profile within a halo can be
determined by applying the spherical collapse model to
the spherically averaged profile of the peak of the linear
density field that collapses to form that halo.

The statistics of the peaks and the profile of the density
field in their vicinity were derived for Gaussian fields in
a seminal paper by Bardeen, Bond, Kaiser and Szalay
(BBKS) [28]. It is convenient to define the overdensity1

smoothed on a scale r as

δ̄(x; r) =

∫
d3x′ W (|x− x′|; r)δ(x′)

=

∫
d3k

(2π)3
W̃ (k; r)δ(k)eik.x, (1)

where the smoothing function is a top hat in real space
so that

W̃ (k; r) =
3(sin(kr)− krcos(kr))

(kr)3
. (2)

For a spherically averaged peak on a scale rpk that col-
lapses to form a halo of mass M ' (4π/3)ρ̄r3

pk, where ρ̄
is the mean density, the statistics of the linear density

1 We implicitly center the peak at x = 0, so δpk ≡ δ̄(x; rpk) =
δ̄(x = 0; rpk).

field in the inner regions on scales rL < rpk can be cal-
culated given the height of the peak, δ̄(rpk) ≡ δpk and
the derivative of the linear density field on this scale,
dδ̄/drL|pk ≡ δ′pk. The key quantity then is the condi-

tional probability P (δ̄(rL)|δpk, δ
′
pk). For Gaussian vari-

ables, X and Y , the conditional probability P (X|Y ) is
also a Gaussian. Taking

X ≡ δ̄(rL), Y ≡

δpk

δ′pk

 , (3)

the mean of δ̄ given these boundary conditions is

〈X|Y 〉 = 〈XX〉〈Y Y 〉−1Y, (4)

where 〈Y Y 〉 is a 2 × 2 matrix with, e.g., 〈Y Y 〉12 =
〈δpkδ

′
pk〉. The variance of the fluctuations is

σ2
X|Y = 〈XX〉 − 〈XY 〉〈Y Y 〉−1〈Y X〉. (5)

Therefore, in the Gaussian case, the power spectrum
for the initial linear density field δ(k) directly determines
the mean and variance of δ̄(rL), the overdensity in the
interior of the peak. We will show in Sec. IV that the
conditional probability P (δ̄(rL)|δpk, δ

′
pk) can also be cal-

culated using the path-integral formulation of excursion
set theory introduced in Refs. [24–26]. This formalism
is particularly useful in calculating the above conditional
probability for non-Gaussian fluctuations which in turn
would allow us to study the impact of primordial non-
Gaussianity on the density profile of dark matter halos.

Dalal et al. [23] pointed out that recovering the inter-
nal profile requires another step. The hierarchy of peaks
within peaks expected for CDM cosmologies modifies the
peak profile calculated from the above probability dis-
tribution. The material in the center of the final halo
typically originates not from the central region of the
corresponding peak but instead from a subpeak within
the main progenitor. The mass within this subpeak is
dragged to the center of the halo by processes like dy-
namical friction. They suggest that this effect can be
taken into account by simply grafting the density of the
highest subpeak onto the overall peak profile. Therefore
the interior density profile of the peak at a given scale rL
is given by the largest value of δ̄ for all the subvolumes
of size rsub = rL. The initial peak on scale rpk contains

N regions of size rL, where N = (rpk/rL)
3
. The density

in each of these subregions is also drawn from the same
Gaussian distribution, so the probability that the den-
sity in any one subpeak is less than a given value δ̄(rL)
is given by the cumulative distribution function

P1(δ̄(rL)) =

∫ δ̄(rL)

−∞
P (δ(r)|δpk, δ

′
pk)dδ(r). (6)

Therefore the probability that the density of all N sub-
peaks is less than this value is given by

PN (δ̄(rL)) = P1(δ̄(rL))N . (7)



3

Therefore the probability that a subpeak at a scale rL
has the highest density among all the subpeaks is given
by dPN/d δ̄(rL). From this probability distribution, we
can compute the mean and variance of the full set of
subhalos.

Given the profile of the initial peak in Eq. (7), Ref. [23]
took a further step to relate this profile to the mass and
density profile of the final halo. They suggested that the
final halo profile can be predicted by applying spherical
collapse to the above spherically averaged profile of the
initial peak. They argued that the shell crossing can be
accounted for by modeling the mass profile deposited by
a given mass shell within the initial peak. In the rest of
this section we briefly review their reasoning.

Considering the profile of the peak of linear density, the
overdensity on a given scale rL grows until it reaches the
turnaround point and then it collapses. The turnaround
point can be calculated by applying the spherical col-
lapse model to the mass shell on this scale. Subsequent
to turnaround, the mass within a given mass shell is no
longer constant since the particles within it can cross
the shell. Therefore the mass shell on a given scale rL
with mass dML does not deposit material over a thin
shell in the final halo but instead lays down material
over a range of radii, Ms(r) = dMLf(r), where Ms(r)
is the mass profile in the final halo laid down by a shell
of width dML. This deposited mass not only increases
the mass within the shell with the smaller radii but also
induces a contraction of the material already present in
that shell. For a spherically symmetric object, the ra-
dial action J(r) ∝ [r × M(r)]1/2 is conserved. There-
fore if the mass at radius r is increased, the radius will
be decreased, an effect referred to as adiabatic contrac-
tion. This contraction can be parametrized by model-
ing the mass profile deposited by each mass shell of the
initial density field. Two toy models for the profile of
the deposited mass were introduced in Ref. [23], re-
ferred to as minimal and nonminimal models hereafter.
The minimal contraction corresponds to the case that
the shell profiles behaves as ρ → const as r → 0, while
in the nonminimal model, the shell profiles have inner
slopes d (log ρshell) /d (log r) ∼ 1

2d (log ρtot) /d (log r).
The minimal model provides a lower limit on the effect
of adiabatic contraction. If the shell profiles have more
mass than is assumed in this model, the contraction can
be stronger. The nonminimal model is an example of
a model in which the shells have nonminimal tails. As
noted in Ref. [23] neither of these models should be taken
as a precise description of the shell profiles; rather, they
are illustrative since they simplify the calculations.

Since the contraction keeps the radial action invariant,
the mass profile deposited in the final halo by a given
mass shell can be calculated from the value of r ×M(r)
before the collapse, for instance, at turnaround

F (ML) ≡ ML × rta(ML)

= 0.6

(
3

4πρ̄

)1/3
M

4/3
L

δ̄lin(ML)
, (8)

where we have used rta ' 0.6 rL/δ̄lin. The mass profile
of the final halo can then be obtained by integrating over
the mass profiles deposited by the mass shells on scales
0 < rL < rpk. For the minimal model, they show that
the mass profile can be calculated by solving the ordinary
differential equation

dM

dr
=

3

r
[M − F−1(Mr)], (9)

while for the nonminimal model, following the same
steps, it is straightforward to show that the mass pro-
file of the halo satisfies the following equation

dM

dr
=

3M

r

M − F−1(Mr)

M + F−1(Mr)
. (10)

In the above equations F−1 is the inverse of the function
F given in Eq. (8).

III. PATH-INTEGRAL FORMULATION OF
EXCURSION SET THEORY

As described in Sec. II, the conditional probability
P (δ̄(rL)|δpk, δ

′
pk) is necessary to compute the final den-

sity profile of dark matter halos. In the Gaussian case,
the conditional probability can be equivalently computed
using the path-integral formulation of excursion set the-
ory and one can reproduces Dalal et al ’s result. This
formalism is particularly useful in extending the Gaus-
sian results to the non-Gaussian case. Therefore in this
section we briefly review the path-integral formulation of
excursion set theory and in Sec. IV we calculate the con-
ditional probability in the Gaussian and non-Gaussian
limits.

Excursion set theory was introduced by Bond, Cole,
Efstathiou and Kaiser [29] (see Zentner [30] for a re-
cent review). It provides an alternative derivation of
the Press-Shechter mass function while solving the so
called “cloud-in-cloud” problem of the original deriva-
tion of Press and Shechter. The path-integral formula-
tion of excursion set theory was developed by Maggiore
and Riotto (MR) in a series of papers [24–26]. This for-
malism allows for straightforward extensions of excursion
set theory to the cases of non-Gaussian initial conditions,
moving barrier, and top-hat filter in real space.

Following MR, we consider an ensemble of trajectories
of δ(S) all starting from the same initial point δ(S0) and
follow them for a time S. This variable S is in one-to-
one correspondence with the smoothing scale r by the
relation S = 〈δ̄2(x, r)〉. We discretize the time interval
[0, S] into infinitesimal steps, ∆S = ε, so that Sk = kε
where k = 0, 1, .., n and Sn ≡ S. The discretized trajec-
tory is then defined as a set of values δ1, δ2, .., δn where
δ(Si) ≡ δi. The probability of arriving at point δn at time
S starting from the initial point δ0 through trajectories
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that never exceeded the threshold is given by

Π(δ0; δn;Sn) ≡
∫ δc

−∞
dδ1 . . .

∫ δc

−∞
dδn−1W (δ0; ...; δn;Sn),

(11)
where

W (δ0; ..., δn;Sn) ≡ 〈δD(δ(S0)− δ0)...δD(δ(Sn)− δn)〉

(12)

is the probability density in the space of trajectories. To
avoid confusion with the overdensity δ, the Dirac delta
function is denoted as δD.

A more useful expression for the probability distribu-
tion Π(δ0; δn;Sn) can be derived by writing the probabil-
ity density function W (δ0; ..; δn;Sn) in terms of p-point
correlation functions of δ. The trick is to use the integral
representation of Dirac delta function,

δD(x) =

∫ ∞
−∞

dλ

2π
e−iλx, (13)

so that

W (δ0; ...; δn, Sn) =

∫ ∞
−∞
Dλ e

∑n
i=0 λiδi〈e−i

∑n
i=0 λiδ(Si)〉,

(14)
where we defined∫ ∞

−∞
Dλ ≡

∫ ∞
−∞

dλ0

2π
. . .

∫ ∞
−∞

dλn
2π

. (15)

The expectation value in Eq. (14) can then be written
as

〈e−i
∑n

i=0 λiδ(Si)〉

= exp

 ∞∑
p=2

(−i)p

p!

n∑
j1,...,jp=0

λj1 . . . λjp〈δ(Sj1)...δ(Sjp)〉c

 ,
(16)

where 〈δ(Sj1)...δ(Sjp)〉c is the connected p-point func-

tion. For Gaussian fluctuations, all the p-point functions
with p > 2 vanish and the probability density reduces to

WG(δ0, ..., δn, Sn) =∫ ∞
−∞
Dλ exp

−i n∑
i=0

λiδi −
1

2

n∑
i,j=0

λiλj〈δiδj〉c

 .

(17)

The non-Gaussian effects primarily arise from the
nonzero contribution of the three-point correlation func-
tion. So by dropping the higher-order correlators, the

probability density WNG(δ0; δn;Sn) can be written as

WNG(δ0; . . . ; δn; δn) =∫
Dλ exp

i n∑
i=0

λiδi −
1

2

n∑
i,j=0

〈δiδj〉cλiλj

+
(−i)3

6

n∑
i,j,k=0

〈δiδjδk〉cλiλjλk

 . (18)

For (the realistic case of) small non-Gaussianities, con-
sidering only the three-point function, the non-Gaussian
probability density can be written perturbatively as

WNG ≈WG −
1

6

n∑
i,j,k=1

〈δiδjδk〉c∂i∂j∂kWG. (19)

In order to derive the mass profile of the collapse halo, as
explained in Sec. II, we need to calculate the conditional
probability P (δn|δ0, δ1). In the next section we compute
this conditional probability in terms of the probability
distribution Π(δ0; δn;Sn) of the path-integral formalism.

IV. CONDITIONAL PROBABILITY FROM
PATH-INTEGRAL FORMULATION

Our goal is to calculate the conditional probability
P (δ̄(rL)|δpk, δ

′
pk), the probability of being in an over-

dense region δn = δ̄(rL) in the interior region of a peak
given the height of the peak δ0 = δpk and the slope of the
linear density profile at the location of the peak δ′pk. We
can also think of this as fixing the first two points in the
trajectory (since the derivative is related to the difference
of the first two points). The conditional probability then
corresponds to the probability of arriving at a point δn
at time Sn given the first two steps, P (δn|δ0, δ1),

P (δn|δ0, δ1) =
Π(δ0; δ1; δn)

Π(δ0; δ1)
. (20)

As a first-order approximation, we calculate the above
conditional probability by considering all the trajectories
between δ0 and δn that pass through the intermediate
step δ1, including those that have passed the threshold.
Therefore the integral limits vary in the range [−∞,∞].
Making this assumption is equivalent to assuming that
the evolution of δ is Markovian. We will use this Marko-
vianity when calculating the non-Gaussian conditional
probability. The probability density Π(δ0; δ1; δn),

Π(δ0; δ1; δn) ≡
∫ ∞
−∞

dδ2 . . .

∫ ∞
−∞

dδn−1W (δ0; δ1; ...; δn),

(21)
where W (δ0; δ1; ...; δn), is given by Eq. (19). Note that
since we are fixing the intermediate step δ1, the probabil-
ity density of Eq. (21) is defined in terms of a summation
over intermediate steps δi, where i > 2.
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A. Gaussian limit

For Gaussian fluctuations, the probability density is
given by Eq. (17). Using the integral representation of
the Dirac delta function simplifies the equations since an
integration over intermediate steps δi ∈ [δ2, δn−1] gives
unity and we have

ΠG(δ0; δ1; δn) =

∫ ∞
−∞

dλ0

2π

∫ ∞
−∞

dλ1

2π

∫ ∞
−∞

dλn
2π

× exp

i ∑
i=0,1,n

λiδi −
1

2

∑
i,j=0,1,n

λiλjξij

 ,

(22)

where we have defined the two-point functions as ξij ≡
〈δiδj〉, so, for example, S0 = ξ00. Carrying out the Gaus-
sian integrals leads to

ΠG(δ0; δ1; δn) =

√
(2π)3

det(Ξ1)
exp

(
− 1

2
~∆T

1 Ξ1
−1 ~∆1

)
,

(23)
where we have defined

Ξ1 ≡

S0 ξ01 ξ0n
ξ01 S1 ξ1n
ξ0n ξ1n Sn

 , ~∆1 ≡

δ0δ1
δn

 . (24)

Similarly, ΠG(δ0; δ1) is given by

ΠG(δ0; δ1) =

√
(2π)3

det Ξ2
exp

(
− 1

2
~∆2
T

Ξ2
−1 ~∆2

)
, (25)

with

Ξ2 =

(
S0 ξ01

ξ01 S1

)
, ~∆2 =

(
δ0
δ1

)
. (26)

Therefore the conditional probability in the Gaussian
limit is

PG(δn|δ0; δ1) =
ΠG(δ0; δ1; δn)

ΠG(δ0; δ1)

=

√
det Ξ2

det Ξ1
e
−
[

1
2

(
~∆1

T
Ξ1

−1~∆1− ~∆2
T

Ξ2
−1~∆2

)]
.

(27)

This equation was used to generate the results shown
in Fig. 1, which agree with those in Ref. [23]. Indeed, it
is clear from Eq. 27 that the conditional probability for
δn is Gaussian, and a little algebra shows that the mean
and variance agree with Eqs. (4) and (5).

B. Non-Gaussian limit

For non-Gaussian fluctuations the probability density
is given by Eq. (19), so

ΠNG(δ0; δ1; . . . ; δn) '
∫
dδ2

∫
dδ3 . . .

∫
dδn−1

×
(

1− 1

6

n∑
i,j,k=0

〈δiδjδk〉c ∂i∂j∂j

)
WG(δ0; δ1; . . . ; δn).

(28)

with a similar expression for Π(δ0; δ1) except δn is also
integrated over. The conditional probability is then

PNG(δn|δ0, δ1) =
ΠNG(δ0; δ1; δn)

ΠNG(δ0; δ1)
. (29)

As discussed before, to calculate the conditional prob-
ability, we make the assumption that for Gaussian fluctu-
ations the evolution of δ as a function of S is Markovian.
This allows us to write

WG(δ0; δ1; . . . ; δn) = WG(δ0; δ1)WG(δ1; . . . ; δn). (30)

In ΠNG(δ0; δ1; . . . ; δn;Sn) the non-Gaussian contribu-
tions can be divided into those that depend on the end
steps (δ0, δ1, δn) and those that do not,

n∑
i,j,k=0

〈δiδjδk〉 ∂i∂j∂k =

1∑
i,j,k=0

〈δiδjδk〉c ∂i∂j∂k

+ 3

1∑
i,j=0

〈δiδjδn〉c ∂i∂j∂n

+ 3

1∑
i=0

〈δiδn2〉c ∂i∂n2

+ 〈δn3〉c ∂n3

+ . . . , (31)

where the dots stand for all the terms that involve at least
one index 2 6 i 6 n−1. These terms vanish upon integra-
tion and therefore do not contribute to Π(δ0; δ1; . . . ; δn).
Moreover, using the Markovian property of Eq. (30), we
see that the contribution from the first term in Eq. (31)
is cancelled by the equal term in Π(δ0; δ1). Therefore
this term does not contribute to the conditional proba-
bility P (δn|δ0; δn). The conditional probability therefore
reduces to

PNG(δn|δ0δ1) = PG(δn|δ0, δ1) + ∆PNG(δn|δ0, δ − 1),
(32)

where

∆PNG(δn|δ0, δ1) =− 1

2

1∑
i,j=0

〈δiδjδn〉c∂i∂j∂nPG(δn|δ0, δ1)

− 1

2

1∑
i=0

〈δiδn2〉c∂i∂n2PG(δn|δ0, δ1)

− 1

6
〈δn3〉c∂n3PG(δn|δ0, δ1). (33)
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In Sec. V, we evaluate the non-Gaussian corrections nu-
merically, but first we present an analytic approximation.

C. Large-δ approximation

In the limit that δ is large, a limit that holds as one
moves to smaller smoothing scales, we can obtain a sim-
ple analytic estimate for the most likely value of δ and for
the non-Gaussian correction. Recall that PN (δ) gives the
cumulative probability that the overdensity of all subha-
los is smaller than δ. The derivative dPN/dδ is the differ-
ential probability that the largest overdensity is equal to
δ. The most likely value then is the value of δ at which
dPN/dδ peaks. Equivalently, the most likely value of δ is
fixed by setting

d2

dδ2
PN1 = 0. (34)

Carrying out the derivatives and setting N−1→ N leads
to

N (P ′1)
2

+ P1P
′′
1 = 0. (35)

But, by definition Eq. (6), P ′1 = P and, since we are
interested in the large-δ limit, P1 is extremely close to
one, so Eq. (35) reduces to

NP 2 = −P ′. (36)

We can first solve this in the Gaussian limit. For large
(δn, Sn), Eq. (27) reduces to

PG →
1√
Sn

exp
{
−δ2/2Sn

}
. (37)

Therefore, the mean value of δn on small scales is given
by the equation

Ne−δ̄
2
n/2Sn =

δ̄n√
Sn
. (38)

This is what we expect: the exponential suppression is
offset by the large number of sub-regions that can attain
independent values. Since N = (rpk/rL)3, to a good
approximation

δ̄n '
√

2Sn
(
ln(rL/rpk)3

)1/2
. (39)

The mean value of δ on small scales, in this simple ap-
proximation, does not depend on the boundary condi-
tions (on the values of the overdensity smoothed on large
scales). Physically, this is reasonable: the fluctuations in
the perturbations on very small scales are so large that
they are virtually independent of the large-scale density
field. The resulting numerical value for δn is within 10%
of the value plotted in Fig. 1 when rL = 10−3rpk.

Now we consider the non-Gaussian correction; Eq. (36)
generalizes to

N(P + ∆PNG)2 = −(P + ∆PNG)′ (40)

10-3 10-2 10-1 100

rL /rpk

100

101

102

δ̄(
r L

)

FIG. 1: Initial linear density profile of the peak. rpk is the
scale of the initial peak which collapses to form the halo while
rL corresponds to the radius of the initial Lagrangian shell.
The purple solid line is the mean of the density field when
conditioned on the first two steps: the height of the central
peak δpk and an intermediate step δ1. The gray dashed line
is the mean of the density field when the off-center peaks are
taken into account. The shaded regions are the corresponding
dispersions.

By expanding this about the zero-order solution, δ →
δ+ δNG, and keeping terms linear in δNG and ∆PNG, we
obtain

2NP
[
P ′δNG + ∆PNG

]
= −P ′′δNG −∆P ′NG (41)

So this immediately determines the shift due to non-
Gaussianity,

δNG = −∆P ′NG + 2NPG∆PNG

P ′′G + 2NPGP ′G
(42)

The denominator can be rewritten using our zero-order
solution as

P ′′G + 2NPGP
′
G = − P

Sn

(
1 +

δ2

Sn

)
, (43)

and the numerator reduces to

∆P ′NG + 2NPG∆PNG =
δ2

6S3
n

〈δn3〉cPG
[
3 +

δ2

Sn

]
. (44)

This leads to a simple expression for the change in the
mean value of δ due to non-Gaussianity,

δNG =
δ2〈δn3〉c

6S2
n

[
3 + δ2

Sn

]
(

1 + δ2

Sn

) → δ2〈δn3〉c
6S2

n

. (45)

We will see in the next section that this approximation is
not quite as good as the Gaussian approximation, over-
shooting by about 40%.

V. RESULTS

In this section we first calculate the linear density pro-
file of the initial peak (the BBKS profile) in the Gaussian



7

10-4 10-3 10-2 10-1

rL /rpk

0.00

0.02

0.04

0.06

0.08

0.10
(δ̄
N
G
/δ̄

G
−

1
)
×

1
0
0

Local, fNL =1

10-3 10-2 10-1

rL /rpk

0.003

0.004

0.005

0.006

0.007

0.008

0.009

(δ̄
N
G
/δ̄

G
−

1
)
×

1
00

Equilateral, fNL =1

FIG. 2: Ratio of mean of the highest subpeak profile for non-Gaussian fluctuations with fNL = 1 to that of Gaussian fluctuations.
The left panel corresponds to local-shape while the right panel corresponds to equilateral-shape non-Gaussianity. In both plots,
the blue circles are the numerical calculation of the non-Gaussian corrections while the red squares correspond to the large δ
approximation of Eq. 45.

limit using Eq. (27). Next we calculate non-Gaussian
corrections to the peak profile by evaluating Eq. (32) nu-
merically. These conditional probabilities are then used
to calculate the statistics of the highest subpeaks from
the differential probability dPN/dδ, where PN is given
by Eq. (7). Finally, we use Dalal et al. ’s prescription
[Eq. (9) or Eq. (10)] to relate the peak profile to the
final density profile of the halo.

We choose the initial conditions such that the peak
profile in the Gaussian limit, agrees approximately with
that in Fig. 2 of Ref. [23]: the height of the peak is
taken to be δpk = δ0 = 2.7 and the density field at the
intermediate step is δ1 = 3.73. These initial conditions
approximately correspond to the main halo in the high-
resolution Via Lectea II simulations by Diemand et al.
[31]. The simulation begins at redshift of z = 104.3 and
outputs 400 snapshots in time ending at z = 0. The
halo properties are determined by processing the snap-
shots. At z = 0 the main halo has r200 = 402 kpc and
M200 = 1.92×1012M� where r200 is the radius enclosing
a density of 200ρM = 200ΩMρcrit and M200 is the the
corresponding mass. The scale of the peak rpk is given
by M200 = (4π/3)ρ̄r3

pk.

Figure 1 shows the mean and dispersion of the lin-
ear density field in the vicinity of the peak for Gaussian
fluctuations. The purple solid line is the mean while the
purple shaded area is the dispersion for the BBKS profile.
Including the hierarchy of peaks within peaks the mean
and dispersion of the density profile around the peak is
modified. The grey dashed line and the shaded grey area
show the mean and dispersion in this case. This figure
can be compared with Fig. 2 in Ref. [23]. It should be
noted that the slight offset in the value of mean in the two
plots is due to small differences in the initial conditions.

To calculate the non-Gaussian corrections to the halo

mass profile, we first need to calculate the non-Gaussian
conditional probability given in Eq. (32). This requires
calculating the three-point correlator. In general the
three-point function in Fourier space is given by

〈δiδjδk〉c =

∫
d3k1

(2π)3

∫
d3k2

(2π)3

∫
d3k3

(2π)3
W (k1, ri)W (k2, rj)

×W (k3, rk)〈δ(k1)δ(k2)δ(k3)〉e−i(k1+k2+k3).x

(46)

The above equation can be written in a more convenient
form in terms of the gravitational potential. The present-
day density field is related to the primordial value of the
gravitational potential Φ via

δ(k, a0) = α(k, ai, a0)Φ(k, ai), (47)

where

α(k, ai, a0) ≡ 2g(ai, a0)k2T (k, a0)

3ΩmH0
2 . (48)

Here g(a1, a2) ≡ [D(a2)/D(a1)][a1/a2] is the growth
suppression factor (a1 < a2). For ΛCDM cosmology
g(ai, a0) ≈ 0.75. T (k, a0) is the matter transfer function
normalized to unity as k → 0. Defining the three-point
function of the gravitational potential Φ in terms of the
bispectrum,

〈Φ(k1)Φ(k2)Φ(k3)〉 = BΦ(k1, k2, k3)(2π)3δ3(k1+k2+k3),
(49)

Eq. (46) reduces to

〈δiδjδk〉c =

∫ ∞
0

dk1k1
2α(k1)

2π2

∫ ∞
0

dk2k2
2α(k2)

4π2

∫ 1

−1

dµ

×α(k3)W (k1, ri)W (k2, rj)W (k3, rk)BΦ(k1, k2, k3),
(50)
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FIG. 3: The ratio of mass profile of the halo for non-Gaussian fluctuations with fNL = 1 to that of the Gaussian fluctuations.
The left panel corresponds to the local shape while the right panel corresponds to the equilateral shape. In both plots, the red
curve (the upper curve) shows the ratio for the minimal model of Eq. (9) while the blue curve (the lower curve) shows the
ratio in the nonminimal model of Eq. (10).

10-5 10-4 10-3 10-2

r/r200

0.01

0.02

0.03

0.04

0.05

0.06

(ρ
N
G
/ρ

G
−

1)
×

10
0

Local, fNL =1

Minimal model
Non-minimal model

10-4 10-3 10-2

r/r200

0.005

0.006

0.007

0.008

0.009

0.010

0.011

0.012
(ρ
N
G
/ρ

G
−

1)
×

10
0

Equilateral, fNL =1

Minimal model
Non-minimal model

FIG. 4: The ratio of density profile of the halo for non-Gaussian fluctuations with fNL = 1 to that of the Gaussian fluctuations.
The left panel corresponds to local-shape while the right panel corresponds to equilateral-shape. In both plots, the red curve
(the upper curve) shows the ratio in the minimal model of Eq. (9) while the blue curve (the lower curve) shows the ratio in
the nonminimal model of Eq. (10).

where k3
2 ≡ k1

2 + k2
2 + 2k1k2µ. For the local ansatz,

Φ(x) = φG(x) + f loc
NL

[
φ2

G(x)− 〈φ2
G(x)〉

]
, (51)

the corresponding three-point correlator is given by

Bloc
Φ (k1, k2, k3) = 2f loc

NL

[
Pφ(k1)Pφ(k2) + 2 cyc.

]
, (52)

where Pφ(k) is the gravitational potential power spec-
trum. Inflation models with higher-derivative opera-
tors such as the Dirac-Born-Infeld model [32] give rise
to equilateral-shape non-Gaussianity which can be de-

scribed by the factorizable form [33]

Beq
Φ (k1, k2, k3) = 6 f eq

NL [−(Pφ(k1)Pφ(k2) + 2cyc.)

−2(Pφ(k1)Pφ(k2)Pφ(k3))
2/3

+(P
1/3
φ (k1)P

2/3
φ (k2)Pφ(k3) + 5perm.)

]
.

(53)

After evaluating the three-point function, Eq. (50), we
calculate the conditional probability given in Eq. (32)
for non-Gaussian fluctuations for local and equilateral
shapes, using fiducial values of f loc

NL = f eq
NL = 1.

Figure 2 shows the ratio of the mean of the highest
subpeak profile for non-Gaussian fluctuations to that of
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Gaussian fluctuations. The left panel shows the ratio for
the local shape while the right panel corresponds to the
equilateral shape. For both local and equilateral shapes,
in the inner regions of the halo (small smoothing scale),
the mean of the highest subpeak profile is enhanced with
respect to the Gaussian case. However, the effect is small,
less than 10−3 even on the smallest scales we have probed.
For the equilateral shape the effect is even smaller than
in the local case.

Using the model of Ref. [23] to map the peak profile
to the mass profile of the collapsed profile, we calculate
the non-Gaussian corrections of the local and equilateral
shapes to the halo mass and density profiles for the two
toy models given in Eq. (9) and Eq. (10). The ratio
of the mass and density profiles for non-Gaussian fluc-
tuations to that for Gaussian fluctuations is plotted in
Figs. 3 and 4. The left panels correspond to the local
shape while the right panels correspond to the equilateral
shape. For both shapes, the mass and density profiles are
enhanced in the inner regions compared to the mass and
density profiles for the Gaussian fluctuations, but at a
level smaller than 10−3. Once again the corrections are
smaller for the equilateral shape. The results indicate
that the non-Gaussian corrections tend to be increasing
at smaller radii.

VI. CONCLUSIONS

In this paper we have investigated the influence of pri-
mordial non-Gaussianity on the density profile of dark
matter halos. Our computation extends the semianalyti-
cal model introduced recently by Dalal et al. [23] which is
based on the relation between the peaks of the initial lin-
ear density field and the final density profile of dark mat-
ter halos. Our overall conclusion is negative, namely that
primordial non-Gaussianity, constrained as it is by recent
Planck results [2] (f loc

NL = 2.7± 5.8 and f eq
NL = −42± 75),

is unlikely to have a noticeable effect on halo profiles as

might be observed in weak lensing, indirect detection, or
large-scale structure.

It is interesting to compare our semianalytic results,
based on the formalisms of Refs. [23] and [26], to the
simulations carried out in Ref. [27]. Although they sim-
ulated more massive halos than the one we have focused
on, generally they found corrections to the density pro-
file of order 2 − 5% for fNL = 100 (their Fig. 7), which
corresponds to 2−5×10−4 for our fiducial fNL = 1. The
simulations of course are limited to relatively large scales,
r ≥ 10 kpc, while our semianalytic approximations are
not valid on scales larger than this since the perturbative
approach to calculate the non-Gaussian correction breaks
at these scales. Nonetheless, Fig. 4 shows that we find
a similar correction to the density profile for the case of
local non-Gaussianity. The hint from their Fig. 7 that
the effect may be increasing on small scales seems to be
borne out by our semianalytic work.

The result that the density increases at inner radii for
local and equilateral non-Gaussianity is easily extendable
to other shapes of non-Gaussianity. In this sense they
might be useful to study the effect of non-Gaussianity on
the matter bispectrum on small scales making use, for
instance, of the halo model approach where one needs to
consider non-Gaussian corrections to the halo mass func-
tion, the bias functions and the halo profile [34]. For halo
modeling of the two-point function, though, our work
seems to suggest that the predictions are insensitive to
the changes that primordial non-Gaussianity induces in
the halo profile.
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